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c) description of the scientific goal of the abopapers and achieved results, including
discussion of their possible applications

Scientific disciplines studying the water relatedues, like hydrology, hydraulics, water
resources, glaciology or oceanography are sometoresdered on the edge of geophysics,
nonetheless hydrosphere is without doubt of gmagbrtance to the planet Earth. Among
disciplines studying the water on Earth, hydrology probably the most frequently
mentioned, as it aims at the most practical anehyidound issues, like floods, droughts, or
water quality. In hydrology the main goal is notyoto clarify, but also to predict, evaluate
or project, what requires application of variousdd of semi-physical, conceptual or data-
based models. However, models usually require redidn of a number of parameters,
which values due to various reasons cannot be mexhsu assessed by the experts. This
means that the performance of a semi-physical nce@tual models rely to large extent not
only on how well they represent or generalize thec@sses they mimics, but also on the
proper choice of the optimization procedure, eviesuich issue is by some considered
purely technical. In case of data-based modelschvtduring the last 20 years become so
popular in water-related sciences, the importarfiapbmization methods is even larger.

My main scientific interest, and the main goal loé ppapers that constitute the scientific
achievement, is to find or propose the most suwetagtimization methods for data-based
models that are frequently used to help solvingi$igehydrological problems. This aims at
linking hydrology, data-based models and optim@atprocedures. The eight papers may
be divided into two groups: five of them are dedote comparison of the performance of
optimization methods used to solve hydrologicalbgems [2,3,4,6,8], three others [1,5,7]
are methodological ones in which the novel optitnra methods (belonging to
Evolutionary Algorithms that are so popular todayg proposed. Obviously, due to the
outstanding number of hydrological problems thaty mequire data-based models which
needs calibration, and due to huge number of maatedsoptimization methods that have
been proposed so far, the topics of my researchtdndzk restricted. In the papers that
constitute the scientific achievement two hydrotadjproblems were considered:



1. Rainfall-runoff forecasting [2,3,6] based on tbase study from moderately cold
climate zone, namely the Upper Annapolis Riverluaent, Nova Scotia, Canada;

2. Modelling of the pollutant transport in riveés §].

Both problems will be motivated and described irengdetails in the further parts of the
manuscript where the particular papers are destribe

The models applied for both tasks are primarilyifiaidl neural networks (ANN):
probably the most popular in various fields of ace multi-layer perceptrons (MLP) (in
[2,3,4,6,8]) and the little known product-units (Pluh [3]). However, other model types are
also tested, in [8] the performance of MLP is coredawith classical regression
approaches, in [3] the performance of PU and MLRampared with HBV conceptual
model designed for catchment runoff forecasting.

The ANNs are usually optimized, or trained — a téreguently used in a specific ANN
“jargon”, by means of the classical gradient-basdégbrithms. The reason is that the
algorithms that use information about derivativespecially such like outstandingly
popular Levenberg-Marquardt algorithm (LM) (HagamdaMenhaj, 1994, Press et al.,
2006) are quick, easy to implement and frequesetyl lto good enough solutions. However,
it is commonly claimed that other optimization natk may be needed to train ANNs as
(1) the gradient-based methods are not global sepproaches and are prone to stick in a
local optimum, (2) in some cases the objective tioncused to train ANNs may be non-
differentiable (such a case is considered in theep§]). Hence, the temptation to train
ANN models by means of so called metaheuristicsoregrwhich the most popular today
are Evolutionary Algorithms, is easily understaridadnd not new. The ANN training by
means of Evolutionary Algorithms have been disadissenumerous studies during the last
two decades (Whitley et al., 1990; Yao, 1993; Beril995, Yao and Liu, 1997; Yao, 1999;
Cantu-Paz and Kamath, 2005; Ding et al., 2013 aadynmore). In addition, Evolutionary
Algorithms are sometimes used not only to optindd¢N parameters, but also to find
optimal ANN architecture (Yao, 1999; Stanley andKkMiilainen 2002; Islam et al., 2009;
Hunter et al., 2012), but this goal was beyond ntgrest so far, as it is of very limited
significance for hydrological problems. As plentl raetaheuristics exist and their wide
applicability is frequently claimed (e.g. Fogel 020, the problem of ANN training is even
sometimes suggested as a good test of their peafaen(He et al., 2009). However,
although the search of proper metaheuristics folNANining started in the 1980's, it is
still far from being finished, as (1) in the vasajority of papers the number of compared
optimization methods is very low (rarely more treafew), what prevents the possibility to
draw a more general conclusions, (2) different issmidrequently lead to contradictory
findings (what is an effect of both possible errarsd different assumptions made by
various researchers).

Evolutionary Computation, i.e. methods inspired Ibiplogical evolution, becomes
extremely popular during last two decades. Plehtyptimization approaches pertain to this
concept, including Evolution Strategies (Béck anctiviefel, 1993; Hansen and Ostermaier,
1996), Genetic Algorithms (Holland, 1975), GenetRrogramming (Koza, 1992),
Differential Evolution (Storn and Price, 1995) amdny more (see for example Onwobulu
and Babu, 2004). There is also a fast growing comiywf optimization algorithms based
on the collective behavior of the swarms of animalled Swarm Intelligence, which
includes approaches like Particle Swarm Optimira({ieberhart and Kennedy, 1995), Ant
Colony Optimization (Dorigo et al., 1996), Cat SmafChu et al., 2006) or Group Search
Optimizers (He et al., 2009). Methods based on rothelogical inspirations are also
investigated, examples include biogeography-badgdritom (Simon et al., 2008) and
cuckoo search approach (Yang and Deb, 2009). Hawewat only biologically-inspired
metaheuristics exist. Following the success of f&ted annealing (Kirkpatrick et al., 1983)



recently a number of optimization algorithms hawerm proposed that are said to be
inspired by non-biological objects, phenomena, lawgven philosophies, like gravitation
(Rashedi et al., 2009), chemical reactions (Lamlang010), cooperation (Masegosa et al.,
2013, Civicioglu, 2013), the concept of Ockham’sara(lacca et al., 2012; Caraffini et al.,
2013) or the beauty of music (Geem et al., 200Dweter, not all novel metaheuristics
turn out successful and worth application to thacpcal problems (Crepisek et al., 2012)
and the attention must be paid to a number of plesgitfalls when using them to new
applications (Weise et al., 2012). It should algonioted that large number of algorithms
developed during last 20 years in fact share siiéa with the well known direct search
methods (Kolda et al., 2003), like Nelder-Mead deargdNMA) (Nelder and Mead, 1965),
the Rosenbrock algorithm (RA) (Rosenbrock, 1960)the Controlled Random Search
(Price, 1977). Putting it together, today one isipged with swarm of methods that are
frequently poorly motivated, rarely their convergens proven, their behavior is often not
well understood and some of them share large gitiels with the others without precisely
stated reasons. As a result the choice of the gatiron metaheuristics that allow solving
the particular problem successfully and efficiemglyisually not an easy task.

Why so many metaheuristics have been proposed@nergl, metaheuristics are needed
when the problem to be solved is multi-modal, h&s a number of local optima. In case of
uni-modal problems, one should refer to gradierseba algorithms (when objective
function is differentiable) or some quick and a8 direct search methods, which basic
variants are usually known for many years. Howewdien number of local optima is large,
the problem of proper balance between exploitafioling the location of the nearest local
optimum) and exploration (finding the basins ofrattion of other, possibly “better”
optima) properties of the algorithm becomes crudalsuch “proper balance” may depend
on the problem and is very tricky to be determirgdnty of metaheuristics were developed
— some of the more recent ones have self-adatgries, which should allow them to be
more flexible and successfully tackle differentdsrof practical problems.

Obviously in my research | also had to make somigalirselection of optimization
algorithms. | pay the major attention to the vemgpglar in recent years Differential
Evolution family of methods. The choice was motedaby their popularity and the specific
behavior during the search, which helps findingghaper balance between global and local
search properties. However, variants of selectedarrsw intelligence approaches,
evolutionary strategies, multialgorithms, as wedl more classical direct search and
gradient-based methods are also applied in the rpag@t constitute the scientific
achievement. In addition, | also invented threeeh@wolutionary Algorithms, two of them
published in highly esteemed Journals in the fiefisComputer Science [1,5]. Some of
these algorithms have been successfully appliedlte hydrological problems.

The discussion of particular papers is divided thi@e thematic groups: papers devoted
to the pollutant transport in rivers [8,4], papamied at rainfall-runoff forecasting [6,3,2]
and papers introducing novel Evolutionary Algorithii7,5,1]. In most papers discussed
below, apart from the search for the most propaiiionary Computation methods for the
selected task, other specific hydrological and w@ttogical goals are also addressed and
will be shortly discussed below.

The description of papers [8,4]

In these papers the problem of finding the valuepasameters required to apply two
different one-dimensional pollutant transport maedel natural rivers is addressed. The



paper [8] reports the results of my first reseaddvoted to application of various
optimization methods to solve specific hydrologipedblem.

Most pollutant transport models require a priorowtedge of a few parameters, which
represent some morphological or hydraulic propgmigparticular river reach. Usually their
on-site measurement in natural rivers is expenaive time consuming, as it frequently
requires performing tracer experiments. Becausthaf a number of empirical formulae
have been devised in the past (Cheong et al., 20@His and Manson, 2004, Deng et al.,
2002 for some review) and in more recent paperslat@-driven methods, including ANNS,
are frequently proposed to evaluate the valuesuoh parameters based on some easily
measurable properties of the river. However, tHecten of such river properties, i.e.
model input variables, is not trivial, especiallyat the available data samples are very
limited.

In papers [8,4] MLP neural networks are used tamede parameters of two different
pollutant transport models, and their performarceampared with the performance of
classical empirical formulae frequently used in-wgarld applications. Paper [4] is devoted
to the evaluation of a single parameter, namelgitodinal dispersion coefficient, which is
needed to apply the simplest one-dimensional adredispersion equation (Taylor, 1953)
at particular river reach. In paper [8] the thremrgmeters of transient storage model
(Bencala and Walters, 1983), which is also commamdgd to describe the pollutant
transport in rivers, are evaluated for each comsdiever reach.

In the paper [8] three optimization methods weste@ to train neural networks, namely
the classical gradient-based Levenberg-Marquagtiridhm which is today probably the
most popular ANN training method, and two basidasats of the methods that rapidly gain
popularity in very different fields of science, nam Differential Evolution and Particle
Swarm Optimization. The main outcomes of the papere as follows: 1. MLP neural
networks highly outperform older empirical formulaad linear regression approach for
estimation of all three parameters of transientagfe model. However, such performance,
especially when the parameter describing the rasgléme in storage zones is considered,
is still not good enough to allow recommendatiortr@af method for practical applications.
Although the evaluations of the dispersion coefiitiand storage zone area parameters
were better, the proper values of all three pararaeire needed to apply transient storage
zone model. Unfortunately, it seems that reachiafficeent improvement may not be
possible until much more data from tracer experimewvere available. 2. In spite of the
obtained results, the basic Differential Evolutadgorithm seems to be a competing method
to the widely-used Levenberg-Marquardt algorithmowsever, the experiment was
performed on small data sample, what may have rafisignt impact on the conclusions.
Indeed, the success of basic Differential Evoluttranant was not confirmed in my further
works, and is also not confirmed in the majoritypapers published by other authors.

The study [4] aimed at estimation of longitudinapersion coefficients and comparison
of different training algorithms. An additional da@as to test the noise injection method to
avoid neural network’s overfitting. As neural netk® are considered to be universal
approximators (Hornik, 1989) they are prone to biterg, i.e. may fit not only to the
signal, but also to the noise present in the tngirsample. There are various ways to limit
the danger of overfitting, one of such method, ethlhoise injection (Holmstrom and
Koistinnen, 1992) is said to be very useful in casemall data sample and hence has been
tested in the study. In addition, as the fitnesgfion (mean absolute error) used was not
differentiable, this paper examines the applicgbof Evolutionary Algorithms in the case
when classical ANN training methods, like LevenbBtgrquardt algorithm, indeed cannot
be used. The problem of longitudinal dispersionfftment estimation by means of ANNs
was also addressed in my first Journal paper phaddidefore PhD (Rowinski et al., 2005),



and in PhD itself, however neither Evolutionary &ighms nor specific methods to avoid
overfitting were not tested there. In the paper pie different global optimization
methods, including six variants of Differential Hwimon, two variants of Particle Swarm
Optimization and a variant of Evolutionary Strat§@MA-ES) were compared for MLP
neural network’s training with noise injection. @tlow a fair comparison, each algorithm
was applied 50 times for the same task. It was dotirat the difference between five
relatively new Differential Evolution methods isnoHowever, the GDE method which |
proposed in paper [7] was according to the resh#smost successful one. The paper also
showed that even if the difference between theopmdnces of the best methods is small,
the choice of optimization method is of large intpace, as about half of tested global
search algorithms perform noticeably poorer. Theopmances of the results obtained
when two the poorest algorithms are used were @venior to the predictions obtained
from an older empirical formulae. The use of nadigection allowed in most cases the
reduction of mean absolute error by 2-20% for imshelent testing data, depending on the
variant considered.

Description of papers [6,3,2]

The rainfall-runoff forecasting seems to be onghefmost popular and important topic in
hydrology. Since the paper by Hsu et al. (1995) ANMve also been widely used to this
task. However, as suggested by Abrahart et al.2R0t% use of neural networks for river
flow forecasting during last two decades was sometitaotic. Little attention has been put
to methodological details, which may however affdet model performance. The three
papers [6,3,2], although aim at solving practicatifelogical problem, also pay special
attention to particular methodological detailstthdl be given below.

From the hydrological point of view all three pap§8,3,2] were devoted to the one day
ahead runoff forecasting at Upper Annapolis Rivatckkment located in Nova Scotia,
Canada, based on hydrometeorological data. Tharoatat is hilly (the highest point do not
reach 300 m high) and mostly covered by foreste. Aihnapolis River is located within the
Humid Continental Climate Zone according to the p&p Climate Classification, with
common snowfall from November to April and signéfit temperature variations during the
winter months that results in frequent freezing amgting events. During summer season
rainfalls do occur, however due to the high temjpeeaand evapotranspiration, the average
runoff in Annapolis River is the lowest from July September. Although such climate
conditions do clearly differ from the ones obserwed?oland, there are also similarities
between Poland and Nova Scotia — in both placesatige seasonal variations occur and
similar processes, connected with cold and snofectthe runoff in winter and spring.
Both Poland and Nova Scotia are included in theesalimate zone by Koppen Climate
Classification. Such similarities and data avallgbiwere important motivation of the
choice of the research location.

The 30 years long daily hydro-meteorological dagsencollected from the Water Survey
of Canada and the Canada’s National Climate Dadarfiormation Archive, for the gauge
station situated in Wilmot settlement (catchmergaab46 krf) and the meteorological
station located at the Greenwood Airfield, 9 knthe east. However, in the first paper [6],
only 10-year long data series were used. Meteoimdbglata include the maximum and
minimum daily air temperature, rainfall, snowfaidasnow cover. The concentration time
of the river is estimated to be, depending on trethod, roughly below 1 day. This,
together with the availability of long hydrologicahd meteorological data series with very
few gaps and significant daily runoff changes thetur in the Annapolis catchment in
winter and spring periods, makes it a good plagedly rainfall-runoff modelling at



moderately cold climate zones. Although this isdred/the scientific achievement given in
this report, | feel free to add that presently | mmrking on the comparison of different
neural networks and conceptual models applied &mfall-runoff forecasting in Nova
Scotia and catchments located in southern Polahd. mentioned study includes also
application of various optimization algorithms tch tested model.

From the methodological point of view apart frome thomparison of optimization
algorithms, the additional specific goals were added in the papers [3] and [2]. Paper [3]
aimed to introduce very simple type of higher ord&Ns called Product-Units and show
their application to rainfall-runoff forecasting.aper [2] verifies the significance of
application of various ANN overfitting methods iaimfall-runoff modelling, when data
samples are large.

The paper [6] was my first work combining rainfaliroff forecasting, neural networks
and Evolutionary Algorithms. Only 10-years long hgldgical and meteorological data
series were used, of which 4 years were put asidagimodel’s calibration as independent
test set. The optimization experiments were peréarnfor several different MLP
architectures, including different variants of ihprariables. The Levenberg-Marquardt
algorithm and eight Evolutionary Algorithms werephed to ANN training. Each method
was applied 50 times for every MLP architecturgitee data sample that may allow seeing
the difference in the modeling performance. Mosthafse algorithms were relatively new
methods at the time of writing the paper and mdrthem have never been compared witch
each other before. The 50-run average and medrforpances were given in the paper, as
frequently judging only on the median or on therage may lead to different conclusions.
It was found that the performances do differ naidg when different training methods are
used, the best results were obtained by means @fatgorithms: Differential Evolution
variant called DEGL (Das et al., 2009) and Levenmidarquardt algorithm. Among other
tested methods only the performance of EPUS-PS@liHg al., 2009) seemed promising.
Among the two winners, Levenberg-Marquardt algonittvas, as expected, much quicker
than DEGL. The performance of Differential Evolutigariants deteriorated quicker with
the number of parameters to be optimized than #réopnance of Levenberg-Marquardt
algorithm or Particle Swarm Optimization approach@®m the hydrological perspective,
two best optimization methods allowed to forechstdaily runoff with the value of Nash-
Sutcliffe coefficient being over 0.91 for indepenté¢esting data. The importance of the
training algorithm may be easily seen when oneceothat for the poorest methods the
values of Nash-Sutcliffe coefficient dropped bel®vb and in the worst cases reached
around 0. This result was important as a warnirag ¢timly some Evolutionary Algorithms
may be a true competition to the most efficientdgrat-based methods, and that not right
choice of optimization method may lead to significainderestimation of the model
performance due to poor calibration.

The paper [3] introduces Product-Units ANNSs to liydrological problems. This kind of
ANNSs, although proposed years ago by Durbin and &thant (1989), was surprisingly
overseen by the hydrological community. The adwgataf PU over MLP and other ANN
types is the relatively low number of parameterswiver, because PU input variables are
raised to exponential weights, as showed in tlezalitire they need a special precaution
during data pre-processing and their fitness foncis considered extremely bumpy, hence
difficult to be optimized. To present a more conplamework for the PU preparation for
a specific task, the paper [3] signifies the impocde of proper selection of optimization
algorithms, methods aimed at improving a neuralvogt’s generalization ability, model
architectures, and parameter box-constrains. IrnH&]proposed method is compared with
the MLP neural networks and widely applied in piaetHBV conceptual model. In this
paper the 30-year long data series were used, athwlast 10 years were used as



independent testing data. A few PU architectureseviested in the study, but they differ
only by the number of hidden nodes, as input véesmlwere kept the same as in the best
architecture found for MLP in the paper [6]. Like previous studies, each algorithm was
applied 50 times for each PU architecture. The mead median values of the
performances were given for each considered variant

Of significant importance in the paper [3] was ttea to introduce box-constraints on
PU weights. It was shown that when all PU pararsedee restricted within [-1,1] interval,
PU optimization problem would be much simpler. Tesults achieved were up to 10%
better (comparing the mean square error), thenrsutdy means of MLP or HBV variants.
Using higher or lower box-constraints lead to detation of the results.

Among 11 tested optimization algorithms there werBifferential Evolution variants,
including DEGL and GDE that performed well in theeydous studies [6,4]; the other 2
algorithms were Levenberg-Marquardt and EPUS-PSade Along with DEGL, also the
variant of DEGL with Proximity-based mutation operaintroduced in Epitropakis et al.
(2011) was used. As in the previous study on rdinfaoff modelling [6] at Annapolis
catchment, the performance of DEGL (and its variaith Proximity-based mutation
operator) and Levenberg-Marquardt algorithms wasdiato outperform the performance of
the other methods. However, additional tests féecsed PU architecture were performed
and it was found that if sufficiently long training allowed, the performance of almost all
Differential Evolution variants would be much maosanilar. This means that the main
advantage of DEGL for PU training lies in its speed

It was surprisingly found that when PU with weighisited within [-1,1] interval is used
methods to prevent ANN overfitting seems not nee@erth result is in contradiction with
findings obtained by MLP neural networks and ish@itreached “by chance” for the
selected problem, or shows the another advantageUofover MLP for rainfall-runoff
modelling. This, however, must be verified in fuigwn the other data.

In the paper it was also found that the one-leag fdeecasting performance of HBV
conceptual model with updating procedure and théoprance of MLP neural networks
are very similar. As mentioned before, the perfarogaof PU neural networks is evaluated
as up to 10% better.

The paper [2] is devoted to the validation of e#ficy of different methods to avoid
ANN overfitting applied to rainfall-runoff forecasyy. Such studies in hydrology are very
rare — probably the only paper devoted to the stibj@s published by Giustolisi and
Laucelli (2005), who studied the impact of such et on the performance of rainfall—
runoff modelling at two very small catchments (up & knf) in Italy. In their study
Evolutionary Algorithms were not considered. Thepgra [2] presents a deliberate
comparison of the performance of Levenberg-Margquatdgorithm and DEGL approach
used together with different methods to prevent Adligrfitting. Also the catchment scale
is much larger than in the study by Giustolisi apaucelli (2005), and the climate
conditions differ significantly.

In the paper [2] three kinds of methods to avoidNAblerfitting are compared: an early
stopping according to Prechlet (1998), the Optihi2@proximation Algorithm proposed
by Liu et al., (2008), and several variants of moisjection based on Holmstrom and
Koistinnen (1992) approach. To see the impact @miiimber of parameters to be optimized
on the performance of the model trained by pamicoptimization method composed with
particular approach to avoid ANN overfitting, diféat architectures (with various input
variables and different number of hidden nodes)wested. The data used were the same
as in the paper [3], optimization performed by ngeahboth algorithms was repeated 50
times for each considered MLP architecture and agetb avoid ANN overfitting.



It was found that the noise injection method mayhH#most successful, but only if the
noise injection parameters are chosen properlys iBhihowever, time consuming not easy.
Moreover, in case of noise injection the standadation of the results may be high. The
performance obtained with much simpler early stogpnethod is only slightly inferior, but
the method is quicker. Hence, the suggestion ofntleghod to avoid overfitting must
depend on the amount of work and time one is réadgvest. Optimized Approximation
Algorithm, although the most recent among testethous, perform poorly for the selected
problem, probably due to two very technical detallscussed more deeply in the paper [2].

The comparison between Levenberg-Marquardt algardhd DEGL showed that DEGL
iIs more sensitive to the curse of dimensionalityhatvcould be expected from the
experience of the paper [6]. When DEGL optimizateigorithm is used smaller MLP
architectures lead to relatively better resultsvdmberg-Marquardt algorithm may be
successfully used also for larger architecturese parformance of Levenberg-Marquardt
algorithm achieved for larger ANN architecture wolnout better than the performance of
DEGL achieved for the simpler one. On the otherdh#the performance reached for two
simple architectures is compared, DEGL slightly peutorms Levenberg-Marquardt
algorithm.

The description of papers [1,5,7]

Except practical application of various optimizatimethods to hydrological problems, in
my work | also focused on the development and imgmeent of Evolutionary Algorithms
themselves. Three novel Evolutionary Algorithmg,balonging to Differential Evolution
family of methods have been proposed. DifferenBablution algorithms gain today a
significant popularity and are very rapidly devet@pin recent years (Das and Suganthan,
2011). My first two algorithms [7,5] are classifies distributed Differential Evolution
methods, as their main advantage lies in the digion of population into sub-populations
that most of computational time work independeritiyt occasionally share information or
exchange individuals among themselves. In distedhEvolutionary Algorithms the main
difficulty lies in the proper development of rulésat govern the process of sharing or
exchanging information or individuals. The thirdy@alithm, proposed recently in paper [1]
is a kind of adaptive memetic Differential Evolutimmethod.

In paper [7] my first optimization method, calledo@ped Multi-Strategy Differential
Evolution (GDE) algorithm was proposed. The mairaicbehind this approach was to
exploit the knowledge about the local minima alsetwlind in different parts of the search
space in order to facilitate further search forgtabal one, using the concept of distributed
computing. The population of individuals is distribd into four groups. Three of them very
rarely communicate with the others, but one isvedid to gain all available knowledge from
the whole population throughout the whole seardte ifdividuals simultaneously use three
different crossover and mutation strategies, wheltes the algorithm more flexible than the
classical Differential Evolution approaches. Thegased algorithm was compared with
two other Differential Evolution variants on thiete 10- to 100-dimensional benchmark
functions of varying difficulty. The proposed methachieved very encouraging results; its
advantage was especially seen when more difficultrey tested 50- and 100-dimensional
problems were considered. Distributed Differen&alolution algorithms are frequently
sensitive to the population size, as both using dowll or too large groups, or sub-
populations, may highly disturb their performankkence, the impact of the number of
individuals on the performance of GDE was also istidn the paper. GDE algorithm,
proposed in paper [7], was further applied to nleneaworks calibration for evaluation of
longitudinal dispersion coefficients in rivers (#] and Piotrowski et al., 2010) and rainfall-



runoff modelling (in [6,3]). However, in my furthevork with optimization algorithms |
found that the GDE algorithm could be noticeablpioved. | also realized that the number
of competing algorithms used in paper [7] was nasreall and the thirteen benchmark
functions that were used were probably not the blesice, as they did not include rotated
problems. However, since the work of Salomon (1986 well known that Evolutionary
Algorithms should be tested against rotated probleas some of them are, due to the
nature of most popular crossover operations, vecgessful in solving various problems as
long as they are separable or the local optimadaaed parallel to the coordinate avis.
This motivated the further research that led tortheeh improved version of the method,
called Differential Evolution algorithm with Sepéed Groups (DE-SG) that was published
in [5].

The algorithm proposed in paper [5] was based orEGhut some its features were
inspired by other distributed and self-adaptivefé@dntial Evolution methods, as well as
so-called Island Models (Tanese, 1989). However;S0E differs in its structure and
mechanisms aimed at sorting and exchanging infoomatetween sub-populations (or
groups). Unlike in the majority of distributed Defential Evolution methods, the
population of individuals is divided into halvesdarules of migration of individuals are
different in each half. Each half is further divideato groups (each contains exactly 10
individuals) that operate independently. Becauseettthange of information within a small
group is quicker, small groups are able to speeéxpgboitation. To facilitate exploration,
communication between individuals belonging toatiént sub-populations and exchange of
individuals between sub-populations are also altbweder specific circumstances. The
truly novel idea proposed for the algorithm wastthdes governing the migration of
individuals between groups within each half diffierboth halves the groups are ranked; the
best individuals are attracted to the group indhe utmost edge, the poorest — to the group
in the opposite edge. Within one half, the bestviddals migrate relatively quickly to an
elite group, while the poorest one migrates slow¥thin the other half the best individuals
migrate slowly, hence are distributed more widatyoag various groups. This gives the
algorithm additional flexibility. Following the expiences from outstandingly popular
SADE (Qin et al., 2009) and GDE, in DE-SG an ofisprmay be produced by one of two
strategies of different nature. The first one ipented to perform better exploration, the
second — exploitation. The proposed method wasesstully compared to eight state of the
art Evolutionary Computation algorithms, includisgme of Differential Evolution variants
recently proposed in highly praised Journals, basednineteen rotated 10- to 50-
dimensional test problems. However, the very higlug of maximum number of function
calls set for each method may be a kind of disatdggnof the paper (most researchers set
much smaller values).

My third variant of Differential Evolution algorith, published in paper [1] is not based
on the concept of distributed Evolutionary Algontb. Although plenty of Differential
Evolution variants were proposed so far, bringiogether different ideas that already led to
successful algorithm is rare in the literaturethe novel approach proposed in paper [1]
three among the most efficient concepts alreadyliepseparately within Differential
Evolution framework are gathered together. Firsthe adaptation of algorithm control
parameters and probabilities of using different atiah strategies (5 are used in the
algorithm) is introduced, following the conceptlaaated in Qin et al. (2009). Secondly,
the Nelder—Mead algorithm is used as a local searethod hybridized with Differential
Evolution, such idea was already successfully adpln Caponio et al. (2009). Thirdly, the
mutation is split into Global and Local models, whHeocal mutation model is based on the
concept of neighborhood of individuals organized aming topology — such idea was
borrowed from Das et al. (2009). The performancéhefnovel algorithm, called Adaptive
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Memetic Differential Evolution with Global and Ldcaeighborhood-based mutation
operators (AM-DEGL) is compared with thirteen difat Differential Evolution variants,
including the most recent ones and DE-SG that pgsed in paper [5], on a set of 25
popular problems which include rotated, shifted agtrid composition functions. In the
paper [1] it was found that, although none amomstete Differential Evolution algorithms
outperform all the others for the majority of prefns, on average the proposed AM-DEGL
perform better than all 13 Differential Evolutiotgarithms selected for comparison. This
showed the possible strength of the idea of bropgogether different successful ideas into
a single algorithm. Also in the paper [1] the intpoce of different components of novel
algorithm is tested, showing that eliminating sooieghem usually only moderately affect
the performance of the algorithm.

In most papers devoted to the novel Evolutionargofthms the authors restrict their
attention to showing that their approach is, in sosense, “better” than the competing
methods. However, in the paper [1] also differemhpof view was discussed. The question
may arise, whether proposing novel Evolutionaryohignms is useful as No Free Lunch
theorems for optimization (Wolpert and Macready, 9719 state that the expected
performance of all possible heuristics on all polesproblems is equal. This means that
none metaheuristic may perform better than randesnck. Hence in the last section of the
paper [1] the limitations and implications of NceErLunch theorems were discussed based
on rich, but unfortunately frequently neglectecerigture. Without getting into details,
important point in the discussion is the meaningatif problems” — among them the ones
that may be of interest to anyone are very raré vast majority of fithess landscapes looks
like a random blurry. This led some researcherpubaside No Free Lunch theorems.
However, Evolutionary Algorithms may fail even oroblems that looks relatively simple
and seems to be of interest to someone. As an dgampvery simple continuous and
differentiable 2-dimensional minimization problemtlwbox constraints was proposed in
paper [1], for which it was empirically verifiedaheach among 14 Differential Evolution
algorithms tested in the paper perform on averagegy than random sampling. It was also
empirically shown that when all such Differentialdtution algorithms search for the
maximum of the proposed problem, they found lowbjective function values than
Differential Evolution algorithms searching for timeinimum. That such problems exist
was, of course, expected based on No Free Luncbraims. The idea behind such
discussion was to give a short review of No Freadutheorems and stimulate the debate
on the ways the Evolutionary Algorithms are comgdaaad “promoted” in the scientific
papers.

Conclusions

One of the main obstacles in hydrology is frequentimber and quality of available
data. If number of data is not large enough, likecase of longitudinal dispersion
coefficient estimation, the performance of modelstimized by means of different
algorithms is moderately diversified (but by no meaimilar). However, when sufficiently
long data sets are available, like in case of allinfinoff modeling in Annapolis river
catchment, the performance of the model signifigasépends on the optimization method.
What may be a surprise, despite the fact that largeber of metaheuristics are used to
neural networks training in various papers, and ithis widely known that gradient-based
methods may stick in a local optima, according lte aichieved results most of tested
Evolutionary Algorithms proposed in recent yearsvately used today are not very useful
in artificial neural networks training. The perfainte of only a few methods is
comparable, or slightly better, than the perforngan€ the most efficient gradient-based
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approaches. Interestingly, such few methods, lik&sD, EPUS-PSO, in some cases GDE
that | proposed myself, are not the ones that aeentost efficient according to tests
performed on benchmark problems.
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5. Discussion of the other scientific/ artistic @estements
Transport of pollutantsin rivers

| was involved in tracer experiments performed @reW river under the Grant: Procesy
transportowe w korytach rzecznych (principal inigegbr: Pawel Rowinski). | took part in
the field experiments and in the evaluation of iamdjnal dispersion coefficients for
studied river reaches, both by means of artificitdlligence methods and directly from the
data collected during the tracer experiments.

In addition | performed a few studies using pulddtilata on the application of artificial
neural networks for evaluation of pollutant trangpo rivers. Apart from the two papers
that aimed at application of Evolutionary Algoritero this topic and were discussed in the
main scientific achievement part, the results hbgen published in three other Journal
papers and several conference proceedings.

Published papers:

Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P,MVallis, S.G., 2011. Evaluation of
temporal concentration profiles for ungauged rivéadlowing pollution incidents.
Hydrological Sciences Journal 56(5), 883-894.

Piotrowski, A., Wallis, S.G., Napiorkowski, J.J.o®inski, P.M., 2007. Evaluation of 1-D
tracer concentration profile in a small river by ane of multi-layer perceptron neural
networks. Hydrology and Earth System Sciences 88311.896.

Rowinski, P.M., Piotrowski, A., Napiorkowski, J.2005. Are artificial neural networks
techniques relevant for the estimates of longitadidispersion coefficient in rivers?
Hydrological Sciences Journal 50(1), 175-187.

Napiorkowski J.J., Piotrowski A., Rowinski P.M., Wa S.G., 2012. Product Unit neural
networks for estimations of longitudinal dispersamefficients in rivers. 2nd IAHR Europe
Congress, 27-29 June, Germany, Munich.

Piotrowski, A.P., Rowinski, P.M., Napiorkowski, .J.2010. Uncertainty study of data-
based models of pollutant transport in rivers. Bealings of River Flow 2010 Conference,
Braunschweig, Germany, 8-10 September.

Piotrowski, A.P., Rowinski, P.M., Napiorkowski, .J.2009. Estimation of parameters of
models of pollutant transport in rivers dependingdata availability. 33rd IAHR Congress:
Water Engineering for a Sustainable Environmenpcddaiver, pp. 1179-1186.

Napiorkowski, J.J., Piotrowski, A., Rowinski, P.MNallis, S.G., 2008. Prediction of the
fate of pollutants in rivers by means of nonliné&olterra series. River Flow 2008:
Proceedings of the International Conference oni&ludydraulics, Ceme-dzmir, Turkey,
3-5 September, 2469-2476.
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Wallis, S.G., Piotrowski, A., Rowinski, P.M., Napkowski, J.J., 2007. Prediction of
dispersion coefficients in a small stream usingfiadl neural networks. Proceedings of
32nd IAHR Congress, Venice.

Rowinski, P.M., Guymer, I., Bielonko, A., Napiorkeli, J.J., Pearson, J., Piotrowski, A.,
2007. Large scale tracer study of mixing in a redtiowland river. Proceedings of 32nd
IAHR Congress, Venice.

Piotrowski, A., Rowinski, P.M., Napiorkowski, J.2006. Assessment of longitudinal
dispersion coefficient by means of different neunatworks. Proceedings of thé" 7
International Conference on Hydroinformatics 200&e, France.

Piotrowski, A., Napiorkowski, J.J., 2005. Dispersicoefficient assessment by means of
different neural networks. Materiaty VIII Krajowdjonferencji Algorytmy Ewolucyjne i
Optymalizacja Globalna, Oficyna Wydawnicza Polite&hWarszawskiej, Warszawa.

River runoff forecasting

A number of my first scientific papers were devotedrunoff forecasting in natural
rivers. The work included application and comparisof performance of regression
methods, a few types of artificial neural network$iase-space reconstruction models,
nearest neighbors approach and Volterra series rémfall-runoff forecasting or
autoregressive runoff modeling. The data were abthfrom Nysa Klodzka River (Poland),
a small creek located in southern parts of lllindSA) and a few rivers located in western
Canada.

Published papers:

Piotrowski, A., Napiorkowski, J.J., Rowinski, P.NQ06. Flash-flood forecasting by means
of neural networks and nearest neighbour approach cemparative study. Nonlinear
Processes in Geophysics 13, 443-448.

Napiorkowski, J.J., Piotrowski, A., 2005. Artifitineural networks as an alternative to the
Volterra series in rainfall-runoff modeling. Actae@physica Polonica, 53(4), 459-472.

Piotrowski, A., Rowinski, P.M., Napiorkowski, J.2004. River flow forecast by selected
black box models. River Flow 2004, Ed: M. Greco, @arravetta, R. D. Morte, Leiden,
Netherlands.

Piotrowski, A., 2003. Poréwnanie prognoz przeptyw@ecznych otrzymanych z modeli
przestrzeni fazowej i sieci neuronowych [ang. Congoa of river runoff forecasting by
means of phase-space reconstruction models andlmeiworks]. Wspétczesne Problemy
Hydrauliki Wod Srédladowych, Materiaty XXIII Ogdlnopolskiej Szkoty Hydudiki,
Gdansk.

Extender abstract:
Piotrowski, A., Napiorkowski, J.J., Rowinski, P.M2004. Extended phase-space

reconstruction technique for the prediction of riflews. Geophysical Research Abstracts,
Vol. 6, 07446, 2004;

16



Reservoir management

[ was involved in studies on management of Siemianowka reservoir (located in the north-
eastern Poland) in order to improve the water conditions in Narew National Park. My
contribution was mainly the help in the choice of the efficient optimization method for
Siemianowka reservoir management.

Published paper:

Kiczko, A., Piotrowski, A., Napiorkowski, I.J., Romanowicz, R.J., 2008. Combined
reservoir management and flow routing modelling: Upper Narew case study. River Flow
2008: Proceedings of the International Conference on Fluvial Hydraulics, Cesme-Izmir,
Turkey, 3-5 September, 1921-1928.

Geophysical hazards for nuclear objects

In the period of 2011-2012 I took part as a contractor in the Institute of Geophysics, PAS
Grant for the young scientists that aimed at improvement of understanding the geophysical
hazards for the nuclear objects by young researchers in the Institute of Geophysics.

Grants and Awards

[ currently lead two Grants. The first one, Grant for young scientists financed by Institute
of Geophysics, aims at selection of optimization methods for catchment runoff forecasting
models in moderate climate zones. The second, Tuventus Plus Grant, is financed by Ministry
of Science and Higher Education and aims at water temperature prediction in natural rivers
by means of empirical models.

Except the grants discussed above I was also a main contractor in the Grant financed by
Ministry of Science and Informatization for preparing my PhD thesis.

I was awarded by National Scholarship for young scientists ,Start” financed by
Foundation for Polish Science in 2008 and its prolongation in 2009. I was also awarded in
2010 by Scholarship founded by prof. Kacper Rybicki for young researchers in Institute of
Geophysics, PAS. I

M1
NIy
1

17





